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Importance of multispin couplings in renormalized Hamiltonians
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We introduce a Monte Carlo approach to the calculation of more distant renormalized interactions with
higher accuracy than is possible with previous methods. We have applied our method to study the effects of
multispin interactions, which turn out to be far more important than commonly assumed. Even though the
individual multispin interactions usually have smaller coupling constants than two-spin interactions, they can
dominate the effects of two-spin interactions because they are so numerous.
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I. INTRODUCTION

The Monte Carlo~MC! renormalization group@1# simu-
lations have been used extensively in the study of crit
phenomena. Each such investigation generally approxim
the renormalized Hamiltonian with only a finite number
coupling constants. For applications to the two- and thr
dimensional Ising model, this number has increased con
erably with time, from 3 in 1979@2# to 99 in 1992@3#. A
proposed criterion for ordering the couplings according
their importance was introduced by Blo¨te et al. @4# As a
general rule, it is believed that couplings tend to become
important when they involve more spins and when the sp
are more distant of each other. It is just this assumption
we investigate in this paper, with the conclusion that mu
spin couplings are far more important than usually believ

Several methods have been created for the purpos
calculating the coupling constants of the renormalized s
tem @5–7#. Recently we have developed a different approa
that enables the calculation of more interactions with hig
accuracy than the earlier methods.@8# Our method is based
on the Brandt-Ron~BR! representation@9# of renormaliza-
tion group transformation, which yields useful informatio
that was not available before. An important contribution
this calculation is that it provides a stable method for cal
lating all couplings that fit within a prechosen distance. Th
feature is the basis of the present work. In fact, we are a
to use the BR representation to obtain previously unavaila
information about the importance of more distant multisp
coupling constants, without the necessity of calculating th
individually.

The most similar calculation to ours that we have found
the literature was carried out by Callaway and Petronizio@7#
in 1984. They showed how to extract individual couplin
constants in a related manner, but suffered from the difficu
that the isolation of a particular coupling constant is n
unique and different calculations result with different valu
The only consistent way to deal with the problem is to ta
all possibilities into account at each level of approximatio
as been done in Ref.@9#.

In this paper, we are showing how we can learn som
thing about the relationship between two-spin and multis
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couplings without necessarily calculating the values of a
particular coupling constants.

In the following section the Brandt-Ron representation
reviewed. Its use in determining coupling constants is brie
described in Sec. III. The method for an indirect estimat
of coupling constants is introduced in Sec. IV. Results for
two- and three-dimensional Ising models are presented
Secs. V and VI.

II. THE BRANDT-RON REPRESENTATION

The Brandt-Ron representation was introduced in Ref.@9#
and used for the calculation of coupling constants of ren
malized systems in Ref.@8#. This representation is based o
the following central idea. The interactions between spins
described by the conditional probability of a specific spin
be11 given explicit values of a set of its neighboring spin
This set of spins and their values is called a ‘‘neighborhoo
Let m be the number of spins in the neighborhood und
consideration, thenP1

m is the table of the conditional prob-
abilities of all possible assignment of the spins in that p
ticular neighborhood. From a Monte Carlo simulation on
given lattice, a sequence of renormalized~block spin! con-
figurations is generated, using the majority-rule transform
tion on 232 blocks, from which theP1 table is measured. I
has been shown in Ref.@9#, for the d52 Ising model using
the majority-rule transformation on 232 blocks, that it is
only important to achieve equilibrium at the local scale
the neighborhood’s size.

Similar results were later obtained also for thed53 case.
In addition, the method can be used equally well with a
other RG transformation as was demonstrated in Ref.@10#.

For thed52 Ising model Brandt and Ron have used th
representation in a sophisticated algorithm that construc
an appropriate set of growing neighborhoods, based on
amount of statistics accumulated during the course of an
simulation. In this way they were able to systematically
duce the truncation error involved in the calculation@9#.

III. CALCULATION OF COUPLINGS FROM P¿’S

Ron and Swendsen have developed a method base
these P1 tables for a stable calculation of renormalize
©2002 The American Physical Society06-1
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Hamiltonian @8#. The calculation is done systematically fo
values ofm, the number of spins in the neighborhood. W
identify all possible even interactions that could be plac
within that neighborhood with one spin placed at the cen
All possible orientations are included, as demanded by tra
lational invariance. TheP1 table is then calculated for ever
possible arrangement of them spins. Naturally, the symme
tries of the model are taken into account to reduce the n
ber of entries in the table. Finally, each entryj of the P1

table,Pj , is translated into its equivalent effective field

Hj52~1/2!ln@~12Pj !/Pj #. ~1!

The determination of the renormalized couplings follo
by minimizing the sum~over j ) of weighted deviations of
the Hamiltonian from the value of theHj obtained from the
Pj by Eq. 1. This approach allows the computation of mo
interactions with higher accuracy than previous methods

Still, it is clear that asm is increased, the number an
complexity of the possible interactions grow rapidly, and t
size of theP1 tables can quickly become intractable. It w
this observation that has led us to adopt a different appro
to allow us to obtain additional information on the streng
and importance of distant and/or multispin interactions wi
out going through the full procedure of computing eve
coupling.

IV. FIXED NEIGHBORHOOD COMPUTATION OF P¿’S

The calculation of theP1 tables as carried out by Brand
and Ron used a normal Monte Carlo simulation of the s
system. This means that each neighborhood appears w
fixed frequency that reflects its probability of appearance
the canonical distribution. Since the accuracy of eachP1

strongly depends on how many samples contribute,
neighborhoods necessarily give very poorly approxima
P1 values.

To deal with this problem, we have developed a meth
that enables an accurate calculation of theP1 value ofany
neighborhood of interest, independent of its thermal pr
ability. This is achieved as follows.

Denote byNm a particular neighborhood consisting ofm
spins around the central spin. On a slightly larger lattice,
the m spins to equalNm , leaving the central spin and th
spins around that neighborhood undetermined. This is
given coarse~block spin! system. The corresponding fin
system of spins is defined on a doubled linear size latt
such that each fixed block spin is replaced, for example, b
2d block of spins of the same sign, whered is the dimension
of the system. The 2d central spins and all those surroundin
the neighborhood may initially assume any value. The ini
fine configuration is thusconsistentwith Nm .

An MC simulation of the fine system is performed wi
the constraint that configurations are restricted to those
are compatible withNm . The restriction is actually pose
only on those fine spins which belong upon the renormal
tion transformation to them spins inNm . That is, if a pro-
posed spin flip would violate the condition that the major
of spins in a block has the same sign as the renormal
05610
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spin in Nm , it is rejected. If the spin flip would result in a
block with an equal number of positive and negative spi
the acceptance probability of the move is 0.5. Brandt a
Ron called a similar process in which theentirerenormalized
system is fixed ‘‘compatible Monte Carlo’’~CMC! @9# and
showed that the procedure has a very small correlation ti
independent of the lattice size, because of the local natur
the relaxation, even though the system is at criticality. Sin
the demand here is compatibility only withNm , it will be
referred to as thepartial CMC. Observe that the generate
configurations are free to assume all possible combinat
of 11’s and21’s at the central block of spins. Thus, theP1

value ofNm can be easily calculated to a desired accuracy
counting the number of11’s and 21’s appearing at the
center ofNm throughout the simulation.

V. TWO-DIMENSIONAL ISING MODEL

As a first application of the fixed-neighborhood method
calculate particularP1 values, we have investigated the in
teractions between two spins that are three lattice const
apart for the two-dimensional Ising model at criticality.

Denote byA(2) the neighborhood in Fig. 1. Since half o
its m536 spins are up and half down, all arranged in
symmetric order around the centers0, its P1 value is exactly
.5, i.e., P1@A(2)#50.5. Flipping the spins3 marked by
s would break that symmetry. To measure theP1 value for
this neighborhood, denoted byA(1), we have placed it on a
92 lattice and performed 53109 partial CMC sweeps on the
corresponding fine spin level of size 182 with periodic
boundary conditions. We obtained P1@A(1)#
50.500 388 7(83). This is in line with normal expectatio
in a ferromagnetic model, since an additional positive s
increased the probability that the central spin was positiv

Now consider the neighborhood in Fig. 2, denoted
B(2), and the corresponding neighborhoodB(1), in which
the circled spin is changed to a positive value. Unexpecte
the flipped spin had aqualitativelydifferent effect. The mea-
sured values were P1@B(2)#50.939 413 7(32) and
P1@B(1)#50.939 397 2(28). So thatP1@B(1)# turned
out to besmallerthanP1@B(2)#. This is somewhat counte
intuitive, since an additional positive spin in its neighbo
hood reducedthe probability that the central spin was pos
tive.

The difference, of course, reflects the effects of the m
tispin couplings in the renormalized Hamiltonians.

FIG. 1. The 36-spin neighborhood surrounding a spins0, de-
noted byA(2). A(1) is obtained by flipping the21 marked by a
s.
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IMPORTANCE OF MULTISPIN COUPLINGS IN . . . PHYSICAL REVIEW E66, 056106 ~2002!
On one hand theP1 values can be translated into corr
sponding effective fields on the central spin using Eq.
H@A(2)#50, H@A(1)#50.000 777 4, H@B(2)#
51.370 558, andH(B(1))51.370 439. On the other han
the Hamiltonian is usually written in the form

H5(
i

KiSi , ~2!

where theKi ’s are the coupling constants and theSi ’s are
various sums of products of spins. The differencesdH(A)
5H@A(1)#2H@A(2)# and dH(B)5H@B(1)#
2H@B(2)# would only depend on couplings involving th
central spin and the flipped spins3, so that

0.000 777 45dH~A!52FK31(
a

Kasi
Asj

A

1higher2order termsG ~3!

20.000 1195dH~B!52FK31(
a

Kasi
Bsj

B

1higher2order termsG , ~4!

whereK3 is the coupling constant of the two-spin couplin
of distance three lattice constants, theKa’s are all the four-
spin couplings that fit in the neighborhood, whilesi

A (si
B) and

sj
A (sj

B) are spins in the neighborhoodA(2) @B(2)# other
thans3. Since theK3 term is identical in Eqs. 3 and~4!, the
difference must come from the multispin terms. That is, ev
if K3 is larger than every one of the multispin-spin coupli
constants, it must besmaller than theirsum. In other words,
we may conclude that the two-spin coupling does not do
nate the Hamiltonian in this case, but that the sum of
contributions of the multispin couplings is more importan

This result can even be seen for two-spin correlations
shorter distances. For example, from the set of 21 coupl
calculated from theP1

20 table in Ref.@8#, we find that the
two-spin coupling of distance 2 is20.0087. There are 14
multispin couplings within this set that involve these tw
spins. Consider the neighborhood of 20 positive spins
the one in which a spin two lattice constants from the cen
is flipped. The contribution of all multispin couplings sum

FIG. 2. The 36-spin neighborhood surrounding a spins0, de-
noted byB(2). B(1) is obtained by flipping the21 marked by a
s.
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up to 0.010 03, so that the net influence is only 0.001 3
This is significantly smaller, and its sign is opposite to that
the two-spin coupling constant.

Similarly for a spin two lattice constants over and one u
at a distanceA5. The two-spin coupling is20.005 993 and
the sum of all other couplings is 0.006 258. These ag
largely cancel out each other with a net influence
0.000 265.

This near cancellation does not happen for the nea
neighbors or for the next nearest neighbors. In fact, the t
spin coupling of the nearest neighbors is about as eight ti
as stronger than all relevant multispin couplings, with bo
having the same sign. The next-nearest-neighbor couplin
only larger by a factor of about three but still has the sa
sign, while for more distant two-spin couplings, we ha
observed a change of sign and near cancellation.

It should be pointed out that we also found some limits
the extent of the effects of multispin interactions. For e
ample, we considered a series of neighborhoods gener
form B(2) ~see Fig. 2! in which all the neighbors, similar to
the one marked bys, at a distance of three lattices constan
from the central spin are flipped. TheP1’s for zero
through all four of these spins being positiv
were: 0.939 413 7(32), 0.939 397 2(28), 0.939 375 0(3
0.939 360 6(46), and 0.939 344 0(44), which made the c
responding differences: 0.000 016 5(43), 0.000 022 2(4
0.000 014 4(56), and 0.000 016 6~64!. Since these differ-
ences were nearly the same within the statistical errors, th
is no evidence for the influence of significant multispin i
teractions in this case. The fact that theseP1’s keep on de-
creasing as more positive spins are introduced, can poss
be explained if one remembers that each spin is actual
block spin that represents the majority of its correspond
fine spins. Introducing a positive block spin among negat
ones would result in attracting possible positive spins in
neighborhood, pushing the negative ones away. Thus,
introduced positive block spins have increased the proba
ity of finding more negative spins close tos0.

VI. THREE-DIMENSIONAL ISING MODEL

For the three-dimensional model, consider a neighb
hood of 26 spins that form a 33333 cube around its center
For the neighborhood of all positive spins we obtain
P1(261)50.943 021 8(95). By flipping one of the corne
spins we getP1(251;12)50.941 228 8(75). This prob
ability is lower, as expected from decreasing the numbe
positive neighbors.

Now consider the neighborhood formed by setting t
bottom nine spins of the cube to11, the top nine to21 and
assigning11 to four of the eight spins in the middle layer i
a consecutive manner,P1(131;132)50.5. Flipping the
positive corner that has more positive neighbors than
others, we find thatP1(121;142)50.501 723 9. As in two
dimensions, we again find a case in which making a s
negative can have a positive effect instead of the more in
itively plausible positive effect. This shows that the stran
results found in two dimensions are also found in three
mensions, so they should be regarded as a common fea
6-3
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D. RON AND R. H. SWENDSEN PHYSICAL REVIEW E66, 056106 ~2002!
of renormalization group transformations.
Again we checked on whether we would find linear b

havior for a sequence of spin reversals at a given dista
Because of the greater difficulty in obtaining good statist
in three dimensions, we looked at the third neighbors~lo-
cated at the corners of the cube!. We considered the sequenc
of all spins positive, one corner reversed, two spins on
posite corners reversed, and three spins, including two op
site corners. The results were:P1(261)50.943 021 8(95),
P1(251;12)50.941 228 8(75), P1(241;22)
50.939 430 1(131), andP1(231;32)50.937 895 1(165),
with corresponding differences of 0.001 79(1), 0.001 80(2),
and 0.001 54(2). Here, the two opposite spins have indepe
dent influences, indicating no detectable multispin effe
However, the third corner spin has an effect that is sign
cantly reduced. We believe that this reflects the fact that
closer to the previous two spins than the two opposite c
ners are to each other. Therefore, this example has given
hint of where the boundary is between needing to inclu
multispin effects, and being able to ignore them.
s

k,
n,

05610
-
e.
s

-
o-

-
.
-
is
r-
s a
e

VII. CONCLUSIONS

In this paper, we have introduced a different method
investigating more distant renormalized interactions w
high accuracy. Our studies have indicated that multispin
teractions are far more important than commonly assum
Even though the individual multispin interactions usua
have smaller coupling constants than two-spin interactio
the fact that they are very numerous can lead to multis
interactions dominating the effects of two-spin interaction
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