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Importance of multispin couplings in renormalized Hamiltonians
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We introduce a Monte Carlo approach to the calculation of more distant renormalized interactions with
higher accuracy than is possible with previous methods. We have applied our method to study the effects of
multispin interactions, which turn out to be far more important than commonly assumed. Even though the
individual multispin interactions usually have smaller coupling constants than two-spin interactions, they can
dominate the effects of two-spin interactions because they are so numerous.
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[. INTRODUCTION couplings without necessarily calculating the values of any
particular coupling constants.
The Monte Carlo(MC) renormalization groupl] simu- In the following section the Brandt-Ron representation is

lations have been used extensively in the study of criticaleviewed. Its use in determining coupling constants is briefly
phenomena. Each such investigation generally approximaté¥escribed in Sec. 1ll. The method for an indirect estimation
the renormalized Hamiltonian with only a finite number of Of coupling constants is introduced in Sec. IV. Results for the
coupling constants. For applications to the two- and threefW0- and three-dimensional Ising models are presented in
dimensional Ising model, this number has increased consid®ecs. V and VI.

erably with time, from 3 in 19792] to 99 in 1992[3]. A

proposed criterion for ordering the couplings according to Il. THE BRANDT-RON REPRESENTATION

their importance was introduced by ‘Bloet al. [4] As a The Brandt-Ron representation was introduced in Ff.
general rule, it is believed that couplings tend to become lesgnqg ysed for the calculation of coupling constants of renor-
important when they involve more spins and when the spingnajized systems in Ref8]. This representation is based on
are more distant of each other. It is just this assumption thahe following central idea. The interactions between spins are
we investigate in this paper, with the conclusion that multi-gescribed by the conditional probability of a specific spin to
spin couplings are far more important than usually believedye 1 1 given explicit values of a set of its neighboring spins.
Several methods have been created for the purpose &g set of spins and their values is called a “neighborhood.”
calculating the coupling constants of the r_enormallzed SYSLet m be the number of spins in the neighborhood under
tem[5-7]. Recently we have developed a different approach,,nsigeration, the®™ is the table of the conditional prob-
that enables the calculation of more interactions with highegpjiies of al| possible assignment of the spins in that par-
accuracy than the earlier metho@S]_Our method is bgsed ticular neighborhood. From a Monte Carlo simulation on a
on the Brandt-Ror{BR)' represgntat!orﬁQ] of renqrmallza-' given lattice, a sequence of renormalizgadock spir) con-
tion group transf(_)rmatlon, which ylelds useful mf_orm_atlon figurations is generated, using the majority-rule transforma-
that was not available before. An important contribution Oftion on 2x 2 blocks. from which thé . table is measured. It
this calculation is that it provides a stable method for calcu]qas been shown in’ Refl9], for thediz Ising model usirig
lating all couplings that fit within a prechosen distance. Th|sthe majority-rule transfor’mation on>22 blocks, that it is

feature is the basis of the'present wqu. In. fact, we are abl'tajnly important to achieve equilibrium at the local scale of
to use the BR representation to obtain previously unavaulablﬁ1e neighborhood's size

'Cngﬁrr::r?t'%gnﬁgg:;hﬁi tlr?:)%?rttr?gfwzggsgﬁrifdésatliztla?ﬁltlfhp;r&] Similar results were later obtained also for tive 3 case.
ping ' Y 9 In addition, the method can be used equally well with any

md;_v#iu;l(l)gt similar calculation to ours that we have found inOther RG transformation as was demonstrated in Rél,
For thed=2 Ising model Brandt and Ron have used their

the literature was carried out by Callaway and Petroriizio representation in a sophisticated algorithm that constructed

e SoUpiT S aproptse se of growig neighboroods, based on e
: . -~ . . Yamount of statistics accumulated during the course of an MC
that the isolation of a particular coupling constant is not

. i : D simulation. In this way they were able to systematically re-
unique and different calculations result with different values.duce the truncation error involved in the calculat[@i
The only consistent way to deal with the problem is to take )
all possibilities into account at each level of approximation, lll. CALCULATION OF COUPLINGS FROM  P,’S
as been done in Ref9].

In this paper, we are showing how we can learn some- Ron and Swendsen have developed a method based on

thing about the relationship between two-spin and multispirthese P, tables for a stable calculation of renormalized
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Hamiltonian[8]. The calculation is done systematically for - 4+ +

values ofm, the number of spins in the neighborhood. We - — 4+ 4+ +

identify all possible even interactions that could be placed - — — 4+ 4+ + 4+

within that neighborhood with one spin placed at the center.

All possible orientations are included, as demanded by trans- O — — %% — — —

lational invariance. Th®, table is then calculated for every + + + + - = =

possible arrangement of te spins. Naturally, the symme- + + + - -

tries of the model are taken into account to reduce the num- + 4+ -

ber of entries in the table. Finally, each enjrpf the P, o ) .

table,P; , is translated into its equivalent effective field FIG. 1. The 36-spin neighborhood surrounding a sgjn de-
noted byA(—). A(+) is obtained by flipping the- 1 marked by a

H;=—(1/2)In[(1—P))/P]. v ©

The determination of the renormalized couplings followsSPin in N, it is rejected. If the spin flip would result in a
by minimizing the sum(over j) of weighted deviations of Plock with an equal number of positive and negative spins,
the Hamiltonian from the value of thit; obtained from the the acceptance probability of the move is 0.5. Brandt and
P: by Eq. 1. This approach allows the computation of moreR0n called a similar process in which tastirerenormalized
- ne with hi : system is fixed “compatible Monte Carlo/CMC) [9] and
interactions with higher accuracy than previous methods. SY P afhid

Still, it is clear that asm is increased, the number and Showed that the procedure has a very small correlation time,
complexity of the possible interactions grow rapidly, and themdependent of the lattice size, because_of the _chal_ nature of
size of theP, tables can quickly become intractable. It was the relaxation, even though the system is at criticality. Since
this observation that has led us to adopt a different approaci?® demand here is compatibility only withy,, it will be
to allow us to obtain additional information on the strengthféférred to as th@artial CMC. Observe that the generated
and importance of distant and/or multispin interactions with-configurations are free to assume all possible combinations

out going through the full procedure of computing every©f +1's and—1's at the central block of spins. Thus, the
coupling. value ofN, can be easily calculated to a desired accuracy by

counting the number oft1's and —1's appearing at the

center ofN,, throughout the simulation.
IV. FIXED NEIGHBORHOOD COMPUTATION OF P.’'S

The calculation of thé® | tables as carried out by Brandt V. TWO-DIMENSIONAL ISING MODEL
and Ron used a normal Monte Carlo simulation of the spin
system. This means that each neighborhood appears with a As a first application of the fixed-neighborhood method to
fixed frequency that reflects its probability of appearance ircalculate particulaP ;. values, we have investigated the in-
the canonical distribution. Since the accuracy of efch  teractions between two spins that are three lattice constants
strongly depends on how many samples contribute, rar@part for the two-dimensional Ising model at criticality.
neighborhoods necessarily give very poorly approximated Denote byA(—) the neighborhood in Fig. 1. Since half of
P, values. its m=36 spins are up and half down, all arranged in a
To deal with this problem, we have developed a methodsymmetric order around the cenggy its P, value is exactly
that enables an accurate calculation of Ehe value ofany .5, i.e.,, P,[A(—)]=0.5. Flipping the spins; marked by
neighborhood of interest, independent of its thermal prob<O would break that symmetry. To measure the value for
ability. This is achieved as follows. this neighborhood, denoted By +), we have placed it on a
Denote byN,, a particular neighborhood consistingmf 92 lattice and performed 8 10° partial CMC sweeps on the
spins around the central spin. On a slightly larger lattice, fixcorresponding fine spin level of size 28&vith periodic
the m spins to equaN,,, leaving the central spin and the boundary  conditions. @ We  obtained P [A(+)]
spins around that neighborhood undetermined. This is the=0.5003887(83). This is in line with normal expectations
given coarse(block spin system. The corresponding fine in a ferromagnetic model, since an additional positive spin
system of spins is defined on a doubled linear size latticeincreased the probability that the central spin was positive.
such that each fixed block spin is replaced, for example, by a Now consider the neighborhood in Fig. 2, denoted by
29 block of spins of the same sign, whatés the dimension B(—), and the corresponding neighborhd®¢H-), in which
of the system. The ®central spins and all those surrounding the circled spin is changed to a positive value. Unexpectedly,
the neighborhood may initially assume any value. The initialthe flipped spin had gualitativelydifferent effect. The mea-
fine configuration is thusonsistenwith N,,. sured values were P [B(—)]=0.9394137(32) and
An MC simulation of the fine system is performed with P [B(+)]=0.9393972(28). So thaP,[B(+)] turned
the constraint that configurations are restricted to those thaiut to besmallerthanP .[B(—)]. This is somewhat counter
are compatible withN,,. The restriction is actually posed intuitive, since an additional positive spin in its neighbor-
only on those fine spins which belong upon the renormalizahood reducedthe probability that the central spin was posi-
tion transformation to then spins inN,,. That is, if a pro- tive.
posed spin flip would violate the condition that the majority = The difference, of course, reflects the effects of the mul-
of spins in a block has the same sign as the renormalizetispin couplings in the renormalized Hamiltonians.
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up to 0.01003, so that the net influence is only 0.001 303.
- - - - - This is significantly smaller, and its sign is opposite to that of

- - - 4+ - = - the two-spin coupling constant.
8 — 4+ s + — -— Similarly for a spin two lattice constants over and one up,
- - - 4+ - - - at a distance/5. The two-spin coupling is-0.005 993 and

the sum of all other couplings is 0.006 258. These again
largely cancel out each other with a net influence of

0.000 265.
FIG. 2. The 36-spin neighborhood surrounding a sgjn de- This near cancellation does not happen for the nearest
noted byB(—). B(+) is obtained by flipping the-1 marked by a  neighbors or for the next nearest neighbors. In fact, the two-
O. spin coupling of the nearest neighbors is about as eight times

as stronger than all relevant multispin couplings, with both
On one hand thé, values can be translated into corre- having the same sign. The next-nearest-neighbor coupling is
sponding effective fields on the central spin using Eq. lonly larger by a factor of about three but still has the same
HIA(—)]=0, H[A(+)]=0.000777 4, HIB(—)] sign, while for more distant two-spin couplings, we have
=1.370558, and4(B(+))=1.370439. On the other hand observed a change of sign and near cancellation.
the Hamiltonian is usually written in the form It should be pointed out that we also found some limits to
the extent of the effects of multispin interactions. For ex-
ample, we considered a series of neighborhoods generated
form B(—) (see Fig. 2in which all the neighbors, similar to
the one marked b, at a distance of three lattices constants
where theK;’s are the coupling constants and tBgs are  from the central spin are flipped. The,'s for zero
various sums of products of spins. The differendgg(A)  through all four of these spins being positive
=H[A(+)]-H[A(-)] and SH(B)=H[B(+)] were: 0.9394137(32), 0.9393972(28), 0.9393750(32),
—H[B(—)] would 0n|y depend on Coup”ngs invo|ving the 0.939 360 6(46), and 0.939 3440(44), which made the cor-
central spin and the flipped spf, so that responding differences: 0.000016 5(43), 0.0000222(43),
0.000014 4(56), and 0.0000165d). Since these differ-
A A ences were nearly the same within the statistical errors, there
K3+2 Kasi's) is no evidence for the influence of significant multispin in-
¢ teractions in this case. The fact that thésg's keep on de-
i creasing as more positive spins are introduced, can possibly
+h|gher—orderterm} ) be explained if one remembers that each spin is actually a
block spin that represents the majority of its corresponding
fine spins. Introducing a positive block spin among negative
K3+2 KaSiBSjB ones would result in attracting possible positive spins in its
@ neighborhood, pushing the negative ones away. Thus, the

H=Z KiSi, 2

0.000 777 4 SH(A)=2

—0.000119- H(B)=2

introduced positive block spins have increased the probabil-
+ higher-order term};, (4) ity of finding more negative spins close $g.
whereKj is the coupling constant of the two-spin coupling VI. THREE-DIMENSIONAL ISING MODEL
of distance three lattice constants, #g¢'’s are all the four- For the three-dimensional model, consider a neighbor-

spin couplings that fit in the neighborhood, whife(sf) and  hood of 26 spins that form ax83x 3 cube around its center.
s (s) are spins in the neighborhod®(—) [B(—)] other  For the neighborhood of all positive spins we obtained
thans;. Since theK; term is identical in Egs. 3 an@), the P, (26+)=0.9430218(95). By flipping one of the corner
difference must come from the multispin terms. That is, everspins we getP_ (25+;1—)=0.9412288(75). This prob-
if K3 is larger than every one of the multispin-spin coupling ability is lower, as expected from decreasing the number of
constants, it must bsmallerthan theirsum In other words,  positive neighbors.
we may conclude that the two-spin coupling does not domi- Now consider the neighborhood formed by setting the
nate the Hamiltonian in this case, but that the sum of théyottom nine spins of the cube tol, the top nine to- 1 and
contributions of the multispin couplings is more important. assigning+ 1 to four of the eight spins in the middle layer in
This result can even be seen for two-spin correlations a§ consecutive mannef_ (13+;13—)=0.5. Flipping the
shorter distances. For example, from the set of 21 couplinggositive corner that has more positive neighbors than the
calculated from theP?’ table in Ref.[8], we find that the others, we find thaP_ (12+;14—)=0.5017239. As in two
two-spin coupling of distance 2 is0.0087. There are 14 dimensions, we again find a case in which making a spin
multispin couplings within this set that involve these two negative can have a positive effect instead of the more intu-
spins. Consider the neighborhood of 20 positive spins andively plausible positive effect. This shows that the strange
the one in which a spin two lattice constants from the centeresults found in two dimensions are also found in three di-
is flipped. The contribution of all multispin couplings sums mensions, so they should be regarded as a common feature
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of renormalization group transformations. VIl. CONCLUSIONS

Again we checked on whether we would find linear be-
havior for a sequence of spin reversals at a given distance. In this paper, we have introduced a different method of
Because of the greater difficulty in obtaining good statisticgnvestigating more distant renormalized interactions with
in three dimensions, we looked at the third neighbdeos high accuracy. Our studies have indicated that multispin in-
cated at the corners of the cob@/e considered the sequence teractions are far more important than commonly assumed.
of all spins positive, one corner reversed, two spins on opEven though the individual multispin interactions usually
posite corners reversed, and three spins, including two oppdtave smaller coupling constants than two-spin interactions,
site corners. The results werB: (26+)=0.9430218(95), the fact that they are very numerous can lead to multispin
P, (25+;1-)=0.9412288(75), P.(24+;2-) interactions dominating the effects of two-spin interactions.
=0.9394301(131), ané, (23+;3—)=0.9378951(165),
with corresponding differences of 0.001(79, 0.001 8@2),
and 0.001 5@2). Here, the two opposite spins have indepen- ACKNOWLEDGMENTS
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